Submitted Articles
- M.V. Ciocanel, J. Nardini, K. Flores, E. Rutter, S. Sindi, A. Volkening. Enhancing generalizability of model discovery across parameter space with multi-experiment equation learning (ME-EQL). arXiv 2506.08916.
- E. Rohr, J. Nardini. A novel sensitivity analysis method for agent-based models stratifies in-silico tumor spheroid simulations. arXiv 2506.00168.
- A. Wenzel, P. Haughey, K. Nguyen, J. Nardini, J. Haugh, K. Flores. Topologically-based parameter inference for agent-based model selection from spatiotemporal cellular data. bioRxiv 2025.06. 13.659586.
Refereed Articles
- A. Malik, K. Nguyen, J. Nardini, K. Flores, C. Krona, S. Nedlander. Mathematical Modeling of Multicellular Tumor Spheroids Quantifies Inter-Patient and Inter-Tumor Heterogeneity. NPJ Systems Biology & Applications 11 (20) 2025. DOI: 10.1038/s41540-025-00492-3.
- J. Nardini. Forecasting and predicting agent-based model data with biologically-informed neural networks. Bulletin of Mathematical Biology 86 (130) 2024. DOI: 10.1007/s11538-024-01357-2.
- K. Nguyen, C. Jameson, S. Baldwin, J. Nardini, R. Smith, J. Haugh, K. Flores. Quantifying fluidization patterns in mesenchymal cell populations using topological data analysis and agent-base modeling. Mathematical Biosciences 370 April 2024. DOI: 10.1016/j.mbs.2024.109158.
- J. Nardini, C. Pugh, H. Byrne. Statistical and Topological Summaries Aid Disease Detection for Segmented Retinal Vascular Images. Microcirculation 30 (4) 2023. DOI: 10.1111/micc.12799
- J. Nardini, B. Stolz, K. Flores, H. Harrington, H. Byrne. Topological data analysis distinguishes parameter regimes in the Anderson-Chaplain model of angiogenesis. PLoS Computational Biology 17 (6) 2021. DOI: 10.1371/journal.pcbi.1009094.
- J. Nardini, R. Baker, M. Simpson, K. Flores. Learning differential equation models from stochastic agent-based model simulations. Journal of the Royal Society Interface 18 (176) 2021. DOI: 10.1098/rsif.2020.0987. Open access version (arXiv 2011.08255).
- J. Lagergren, J. Nardini, R. Baker, M. Simpson, K. Flores. Biologically-informed neural networks guide mechanistic modeling from sparse experimental data. PLoS Computational Biology 16 (12) 2020. DOI: 10.1371/journal.pcbi.1008462.
- J. Nardini, J. Lagergren, A. Hawkins-Daarud, L. Curtin, B. Morris, E. Rutter, K. Swanson, K. Flores. Learning Equations from Biological Data with Limited Time Samples. Bulletin of Mathematical Biology. 82 (119) 2020. DOI: 10.1007/s11538-020-00794-z
- R. Everett, K. Flores, N. Henscheid, J. Lagergren, K. Larripa, D. Li, J. Nardini, P. Nguyen, E. B. Pittman, E. Rutter. A tutorial Review of Mathematical Techniques for Quantifying Tumor Heterogeneity. Mathematical Biosciences and Engineering 17 (4) 2020. DOI: 10.3934/mbe.2020207
- 5. J. Lagergren, J. Nardini, G. M. Lavigne, E. M. Rutter, K. B. Flores, Learning partial differential equations for biological transport models from noisy spatiotemporal data. Proceedings of the Royal Society A 476 (2234), 2020 DOI: 10.1098/rspa.2019.0800.
- D. Bhaskar, A. Manhart, J. Milzman, J. Nardini, K. Storey, C. Topaz, L. Ziegelmeier, Analyzing Collective Behavior with Machine Learning and Topology. Chaos: An Interdisciplinary Journal of Nonlinear Science. 29 (12), 123125, 2019 DOI: 10.1063/1.5125493
- J. Nardini, D. M. Bortz. The Influence of Numerical Error on an Inverse Problem Methodology in PDE Models. Inverse Problems 35 (6) 065003, 2019. DOI: 10.1088/1361-6420/ab10bb
- J. Nardini, D. M. Bortz. Investigation of a Structured Fisher’s Equation with Applications in Biochemistry. SIAM J. Appl. Math. Vol. 78, No. 3: pp. 1712-1736. 2018. DOI: 10.1137/16M1108546.
- J. Nardini, D. Chapnick, X. Liu, D. M. Bortz. Modeling keratinocyte wound healing dynamics: cell-cell adhesion promotes sustained collective migration. J. Theor. Biol., 7 July 2016, 103-117. DOI: 10.1016/j.jtbi.2016.04.015.
- K. Adoteye, R. Baraldi, K. Flores, J. Nardini, H. T. Banks, W. C. Thompson. Correlation of parameter estimators for models admitting multiple parameterizations. Int. J. Pure Appl. Math., 105(3) 497, 2015. DOI: 10.12732/ijpam.v105i3.16.
- T. Huffman, K. Link, J. Nardini, L. Poag, K. Flores, H.T. Banks, B. Biasco, J. Jungfleisch, J. Diez. A mathematical model of RNA3 recruitment in the replication cycle of brome mosaic virus. Int. J. Pure Appl. Math., 92(1) 27, 2014. DOI: 10.12732/ijpam.v92i1.3.
- H.T. Banks, A. Choi, T. Huffman, J. Nardini, L. Poag, W.C. Thompson. Quantifying CFSE label decay in flow cytometry data. Appl. Math. Lett., 26(5) 571, 2013. DOI: 10.1016/j.aml.2012.12.010.