
John T. Nardini Research Statement Page 1 of 7

The core of my research is data-driven mathematical modeling, which I typically use to
study biological problems through interdisciplinary collaboration. My ongoing and future
research projects focus on the development, analysis, and application of methods to enable
robust parameter estimation, model selection, and uncertainty quantification directly from
biological data [1, 2, 3, 4]. I combine concepts from machine learning, data science, and
topology to aid in the model development process [5, 6, 7, 8]. This work stems from my doc-
toral and postdoctoral research on the derivation and analysis of partial differential equation
(PDE) models from both biological data and stochastic agent-based models (ABMs). My
research involves extensive interdisciplinary collaboration, and some of my ongoing efforts
include work with:

• Chemical engineers to ascertain how individual interactions in a mathematical model
scale to emergent collective phenomena,

• Topologists to automatically infer the characteristic morphologies of healthy and can-
cerous blood vessel networks, and

• Neuro-oncologists to determine optimal experimental design methods for equation
learning algorithms.

A common factor in these biological problems is collective behavior, or the emergent
population-wide patterns that arise from many interacting individuals. The biological ques-
tions that I investigate include how individual interactions scale to healthy or impaired wound
healing dynamics [3, 7, 9, 10], how to distinguish different blood vessel network morpholo-
gies, and how to infer the individual interactions underlying biological flocking [5]. While
this work has been designed with specific biological applications in mind, the ubiquity of
collective behavior ensures that the resulting models and methods that I have developed are
broadly applicable to many biological fields, ranging from microscales such as biomechanics
and cellular biology to macroscales that include ecological foraging.

Below, I summarize some of my key research studies towards this problem as well as
plans for future work. These areas of my research include (A) Mathematical Modeling of Cell
Migration during Wound Healing, (B) Topological Data Analysis of Biological Phenomena,
and (C) Discovering Dynamical System Models with Machine Learning .

(A) Mathematical Modeling of Cell Migration During Wound Healing
Background: Reaction-diffusion PDE models are frequently used to model the wound
healing process to elucidate how cell populations collectively migrate into the wound space.
A challenge for mathematicians is to develop models that capture cell interactions and
can describe experimental data. Some current wound healing dynamics that are poorly
understood include how cells interact during with their neighbors and methods to quantify
the biochemical regulation of collective migration. My research aim is to inform our under-
standing of wound healing dynamics as a means to elucidate what goes wrong in nonhealing
wounds, which cost the US Health Care system $15 billion annually.

I collaborated with experimentalists from the Department of Biochemistry at the Uni-
versity of Colorado, Boulder to study how cells interact during the wound healing process.
Figure 1 depicts three snapshots of a scratch assay experiment conducted to mimic human
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wound healing. Briefly, a sheet of human skin cells is grown to confluence. Half of this sheet
is then scratched away, and the remaining cells migrate rightwards into the denuded area.
Human skin cells maintain physical connections to their neighbors during these experiments,
and how cells use these connections to interact with their neighbors is poorly understood.
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Model P Against EGF Data
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Figure 1: Experimental wound healing snapshots against best-fit profiles for Models H (left)
and P (right) at t = 13, 20, and 27 hours.

It is challenging to develop models of wound healing that can describe experimental data
due to the complexity of this process. I derived two multiscale PDE models that considered
two plausible hypotheses on how cells interact with their neighbors during the wound healing
[9]. The first model (Model H) assumes cells use physical connections to hinder the migration
of others into the wound area, and the second model (Model P) assumes cells use physical
connections to promote the migration of others into the wound area. Model P (solid blue
lines) better matches the experimental cell density than Model H (black dashed lines) in
Figure 1, which suggests that cells use physical connections to promote the migration of
their neighbors. We validated this hypothesis experimentally and concluded that human
skin cells use physical connections to promote the migration of their neighbors during wound
healing. This study was the first to derive a PDE model that matches experimental data while
considering cell-cell interactions.

Biologists understand that internal biochemical pathways influence cell speed during
wound healing, but there is no accepted mathematical method to quantify the influence of
biochemical activation on migration patterns. Towards this end, I developed and analyzed
a biochemically-structured reaction-diffusion equation given by

∂u

∂t
+

∂

∂m
[f(t)g(m)u]︸ ︷︷ ︸
activation

= D(m)
∂2u

∂x2︸ ︷︷ ︸
diffusion

+λ(m)u (1 − w(t, x))︸ ︷︷ ︸
population growth

(1)

w(t, x) =

∫ m1

m0

u(t, x,m)dm.

where u(t, x,m) is a structured cell density with activation level m at the spatial dimension
x over time t, f(t) represents biochemical activation in response to a chemical, g(m) provides
nonlinear rates of biochemical activation, D(m) denotes activation-dependent diffusion, λ(m)
denotes proliferation, and w(t, x) represents cell density in time and space.
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In some regimes, I proved that this equation admits unique self-similar traveling wave
solutions characterizing how populations simultaneously migrate in space and activate along
the biochemical dimension [10]. To analyze the full equation, I combined numerical results
with analytical results to show that activating the entire population leads to the furthest-
migrating simulations. These results present novel methods to analyze and interpret struc-
tured PDE models which provides an avenue into richer dynamics capturing the interaction
between biochemical pathways and population-wide migration rates during wound healing.

Future work: Haptotaxis refers to the directed migration of cells towards adhesion
sites on the ground. This process guides many steps of wound healing, but has not been
mathematically explored due to difficulties in creating gradients of adhesion molecules. We
are collaborating with the Haugh Lab (NCSU Chemical Engineering) to derive agent-based
models (ABMs) of haptotaxis. We have developed algorithms to track cell locations over
time and are now comparing ABM simulations to this data to understand the individual cell
mechanisms that lead to healthy wound healing. We have applied for a $1.2 million Joint
NSF/NIH DMS/NIGMS grant (J. Nardini, Co-PI) to support this project from 2021-2025.

(B) Topological Data Analysis of Biological Phenomena
Background: In many biological processes, complicated interactions between individuals
lead to fascinating emergent behavior: the flocking of birds, branched blood vessel networks,
or the spots dotting a leopard’s skin. Topological data analysis (TDA) is an emerging field
of research that is suited to extract and infer geometrical properties from experimental
data on these phenomena. Agent-based models (ABMs) are suited model the interactions
that lead to this patterns, but ABM analysis is challenging due to its discrete, stochastic,
and computational nature. I use TDA to enable common analyses for ABMs, including
parameter estimation, model selection, and sensitivity analysis. Below, I discuss two ap-
plications of this methodology for parameter estimation and sensitivity analysis for ABMs
with application to biological flocking and blood vessel formation.

Parameter estimation for biological swarm ABMs
When comparing ABMs to experimental
data, we may be interested in whether the
emergent behavior from the ABM and data
match each other. Topological data analy-
sis (TDA) uses methods from topology to
summarize such patterns underlying data.
In particular, crocker plots are a topologi-
cal signature that count the number of loops
(H1) in a dataset over time. In Figure 3, I
depict the crocker plot for a spatial ABM,
and we see that H1 = 2 over many time

Figure 3: An ABM’s patterning can be
summarized with topological information.

points and proximity parameters, signifying the presence of two loops (one clockwise, one
counter-clockwise) in the ABM simulation.

Machine learning is suited to extract complex interactions from high-dimensional data.
My research provided the first study to demonstrate how TDA-derived features can accu-
rately train machine learning algorithms for predicting spatiotemporal dynamics. We simu-
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lated an ABM for many parameter values and computed the corresponding crocker plots for
each simulations. Using these crocker plots as the input feature vectors, we trained a linear
support vector machine (SVM) that outputs a parameter prediction. Performing 5-fold cross
validation led to accurate parameter classification for 90% of the held out ABM simulations.
We also trained linear SVMs with order parameters (physics-based calculations summarizing
the polarity, angular momentum, and distance between agents) to compare our topological
approach against. Linear SVMs trained on order parameters only achieved at best 80% ac-
curacy. We ultimately concluded that TDA provides an efficient way to visually summarize
the patterns underlying data and which can aid parameter estimation for an ABM.

Topological Analysis for Spatial Blood Vessel Networks
Current TDA methods focus on analyzing point clouds of data, including collections of

points in Rn. Spatial networks demonstrate a
range of interesting topological properties, but
current methods to summarize these patterns
from data are lacking. A striking example of
such networks include blood vessels (Fig. 4),
where we observe distinct network morpholo-
gies inside healthy and diseased human eyes. I
have developed a novel TDA methodology to
summarize the topological information present
in network images and demonstrated that this
methodology can accurately classify simulations
from an ABM of the blood vessel development
process. I plan to extend this framework in the
future to serve as a computational tool to sum-
marize network morphologies and aid medical
specialists in diagnosing retinal diseases.

Figure 4: Healthy and diseased eyes lead
to varied network structure and function.

Figure 5: The plane sweeping approach in 2d: We begin with an image of a simulated
network (red pixels denote the presence of a blood vessel) and sweep a line from left to

right over the image to extract the network’s topological information.
We demonstrated that this novel filtration approach can accurately classify model simu-
lations of the blood vessel development process. We generated over 1,000 simulated blood
vessel networks with an ABM model using different mechanistic parameters for each network.
A simple k-means clustering algorithm can robustly separate the large parameter space into
distinct regions that lead to topologically similar networks.

Future Work: An open question from this research is the development of stability
criteria to ensure these summaries of data are not corrupted by noise. I plan to perform
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a stability analysis of the plane sweeping approach to ensure this methodology robustly
identifies the topological features of a given network. Once we know this methodology is
stable, I plan to use this methodology to train machine learning algorithms on a database
of over 200 blood vessel networks (similar to those Figure 4) that have been labelled with
professional disease diagnostics. This will lead to a useful computational tool that will allow
medical specialists to easily diagnose patients.

(C) Discovering Dynamical System Models with Machine Learning
Background: Model selection is challenging because many models may be able to repro-
duce similar behavior. Equation learning is a recent field of research that uses concepts from
machine learning to infer a mathematical model directly from noisy data. Biological data
presents many challenges for such methods with sparse and noisy data, as small noise levels,
as small noise levels (such as 5%) and infrequent sampling of data can corrupt derivative
computations and, in turn, lead to inaccurate model recovery. I have developed an equation
learning pipeline to enable accurate model selection from sparse and noisy data.

Suppose we have noisy observations, y(t, x), of some smooth PDE, u(t, x). I have de-
veloped an equation learning pipeline (Figure 6) to infer equations from noisy data using
and artificial neural network for denoising, the PDE Functional Identification of Nonlinear
Dynamics (PDE-Find) algorithm, and model selection.

Final equation:
				𝑢# = 0.3𝑢(( + 2.9𝑢 − 2.8𝑢.

Model analysis:
				𝑢# = 𝐷𝑢(( + 	𝑟𝑢 1 −𝑢 ,
						𝑟 = 2.8± 0.2
					𝐷 = .32 ± .03

Model 1:
		𝑢# = .1𝑢(+ .2𝑢(( + 2𝑢 −2𝑢.

Model 2:
		𝑢# = 0.3𝑢(( + 2.9𝑢 − 2.8𝑢.

Model 3: 
		𝑢# = .3𝑢(( + 1.4𝑢 − 27𝑢.𝑢((
								

0. Noisy data
1. Data denoising 
& differentiation

2. Equation 
learning

3. Model selection 
& post-processing

Figure 6: An equation learning pipeline consisting of data denoising, equation learning, and
model selection allows for accurate model discovery with sparse and noisy biological data.
The first step of this pipeline denoises y(t, x) to obtain derivative estimates ut, ux, uxx,

etc. The second step builds a large library of candidate terms for the learned model, such as

Θ =
[
u u2 ... up ux uxx ...

]
,

where each column of Θ is a vectorization of the written term. The learned model for y is
then obtained by sparsely solving the linear system

ut = Θξ. (2)

The nonzero elements of ξ provide parameter estimates for the relevant terms in the learned
model. We obtain several candidate models from this process and perform model selection
and uncertainty quantification in the final step.
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Inaccurate data denoising in step 1 of the pipeline leads to inaccurate differentiation and
incorrect learned equations. Many current methods use polynomial splines for denoising,
which can be corrupted in the presence of noise and few time samples (such as 5% noise with
5 time samples). We address the challenge of robust denoising and learning of sparse noisy
data in [6, 8] by using a simple hidden-layer artificial neural network (ANN) to denoise data
and perform model selection over several learned equations. I demonstrated in collaboration
with neuro-oncologists that this pipeline accurately recovers the equations underlying noisy
data from cancer-related models with as few as three data samples [8]. The ability to learn
equations in the presence of high noise levels and sparse time sampling will further our
understanding of many biological phenomena where data collection is challenging, e.g., brain
cancer imaging.

Future work: Mean-field differential equation mod-
els are often used as surrogates for discrete and stochas-
tic ABM simulations. Such models are advantageous for
ABM analysis because they can be analyzed with an-
alytical techniques (e.g., bifurcation & traveling wave
analysis), but they often lead to inaccurate ABM dy-
namics. I am collaborating with Ruth Baker and
Matthew Simpson to determine how our equation learn-
ing pipeline can learn novel differential equation models
that approximate ABMs better than mean-field models
and capture how spatial patterns between agents affect
the population’s overall dynamical rates. As an exam-
ple, I depict the output of an ABM for the growth of a
population of cells during a proliferation assay against
its continuum limit model and learned model in Figure
7. The mean-field model does a poor job describing the

Figure 7: Comparing ABM out-
put to differential equation mod-
els.

ABM output while the learned model nicely matches the ABM. The development of learned
differential equations models will enable accurate inference of ABM dynamics by using ana-
lytical techniques to understand the learned equation behavior.
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